We love eBooks

    Multiple Regression: 2014 Edition (Statistical Associates Blue Book Series 6) (English Edition)

    Por G. David Garson

    Sobre

    MULTIPLE REGRESSION

    An illustrated tutorial and introduction to multiple linear regression analysis using SPSS, SAS, or Stata. Suitable for introductory graduate-level study.

    The 2014 edition is a major update to the 2012 edition. Among the new features are these:

    * Now includes worked examples for SPSS, SAS, and Stata.
    * Was 180 pages with 70 illustrations, now 410 pages with over 300 illustrations.
    * Thoroughly revised and updated throughout.
    * Now covers quantile regression, needed for heterosccedastic models
    * Now covers difference in differences regression.
    * Now covers robust regression (not just regression w/ robust standard errors)
    * Greatly expanded coverage of residual analysis.
    * Greatly expanded coverage of model selection regression
    * New section on plotting interactions through simple slope analysis
    * Links to all datasets used in the text.

    Partial table of contents:
    Overview13
    Data examples in this volume16
    Key Terms and Concepts17
    OLS estimation17
    The regression equation18
    Dependent variable20
    Independent variables21
    Dummy variables21
    Interaction effects22
    Interactions22
    Centering23
    Significance of interaction effects23
    Interaction terms with categorical dummies24
    Plotting interactions through simple slope analysis24
    Separate regressions27
    Predicted values28
    SPSS28
    SAS28
    Stata29
    Adjusted predicted values30
    Residuals31
    Centering31
    OLS regression in SPSS32
    Example32
    SPSS input32
    SPSS Output33
    The regression coefficient, b33
    Interpreting b for dummy variables34
    Confidence limits on b35
    Beta weights35
    Zero-order, partial, and part correlations36
    R2 and the “Model Summary” table39
    The Anova table40
    Tolerance and VIF collinearity statistics40
    SPSS plots41
    SPSS “Plots” dialog41
    Plot of standardized residuals against standardized predicted values43
    Histogram of standardized residuals44
    Normal probability (P-P) plot45
    OLS regression in SAS46
    Example46
    SAS input47
    SAS output48
    The regression coefficient, b48
    Interpreting b for dummy variables49
    Confidence limits on b49
    Beta weights50
    Zero order, partial, and part correlation52
    R-Squared and the Anova table53
    Tolerance and VIF collinearity statistics54
    SAS Plots55
    SAS plotting options55
    Plot of residuals against predicted values57
    Histogram and kernel density plot of standardized residuals58
    Normal probability (P-P) plot59
    Normal quantile-quantile (Q-Q) plot60
    Other SAS plots61
    OLS regression in Stata64
    Example64
    Stata input65
    Stata output66
    The regression coefficient, b66
    Interpreting b coefficients67
    Confidence limits on b68
    Beta weights68
    R-Squared and the Anova table68
    Zero order, partial, and part correlation69
    Tolerance and VIF collinearity statistics69
    Other Stata postestimation output70
    Stata Plots71
    Stata plotting options71
    Plot of standardized residuals against standardized predicted values71
    Histogram of standardized residuals73
    Normal probability (P-P) plot74
    Margin plots75
    Robust regression75
    Overview75
    When to use robust regression76
    Robust regression in SPSS76
    Overview76
    SPSS input77
    SPSS output77
    Robust regression in SAS78
    SAS input78
    SAS output80
    Robust regression in Stata81
    Stata input81
    Stata output81
    Hierarchical multiple regression82
    Overview82
    Examples83
    Difference in differences regression83
    Overview83
    The parallel trend assumption84
    Example data85
    Data setup86
    The model86
    Difference modeling in SPSS89
    SPSS input89
    Should the dependent variable be linear or logarithmic?90
    SPSS output92
    Difference modeling in SAS94
    SAS input94
    Should the dependent variable be linear or logarithmic?95
    SAS output96
    Difference modeling in Stata98
    Stata input98
    Should the dependent variable be linear or logarithmic?98
    Stata output99
    Panel data regression101
    Overview101
    Types of panel data regression1
    Baixar eBook Link atualizado em 2017
    Talvez você seja redirecionado para outro site

    eBooks por G. David Garson

    Página do autor

    Relacionados com esse eBook

    Navegar por coleções