Handbook of Differential Equations, Second Edition is a handy reference to many popular techniques for solving and approximating differential equations, including numerical methods and exact and approximate analytical methods. Topics covered range from transformations and constant coefficient linear equations to Picard iteration, along with conformal mappings and inverse scattering.
Comprised of 192 chapters, this book begins with an introduction to transformations as well as general ideas about differential equations and how they are solved, together with the techniques needed to determine if a partial differential equation is well-posed or what the "natural" boundary conditions are. Subsequent sections focus on exact and approximate analytical solution techniques for differential equations, along with numerical methods for ordinary and partial differential equations.
This monograph is intended for students taking courses in differential equations at either the undergraduate or graduate level, and should also be useful for practicing engineers or scientists who solve differential equations on an occasional basis.
Comprised of 192 chapters, this book begins with an introduction to transformations as well as general ideas about differential equations and how they are solved, together with the techniques needed to determine if a partial differential equation is well-posed or what the "natural" boundary conditions are. Subsequent sections focus on exact and approximate analytical solution techniques for differential equations, along with numerical methods for ordinary and partial differential equations.
This monograph is intended for students taking courses in differential equations at either the undergraduate or graduate level, and should also be useful for practicing engineers or scientists who solve differential equations on an occasional basis.