Extrai:
Les rayons uraniques, découverts par M. Becquerel, impressionnent les plaques photographiques à l’abri de la lumière ; ils peuvent traverser toutes les substances solides, liquides et gazeuses, à condition que l’épaisseur en soit suffisamment faible ; en traversant les gaz, ils les rendent faiblement conducteurs de l’électricité[1].
Ces propriétés des composés d’urane ne sont dues à aucune cause excitatrice connue. Le rayonnement semble spontané ; il ne diminue point d’intensité quand on conserve les composés d’urane dans l’obscurité complète pendant des années ; il ne s’agit donc pas là d’une phosphorescence particulière produite par la lumière.
La spontanéité et la constance du rayonnement uranique se présentaient comme un phénomène physique tout à fait extraordinaire. M. Becquerel a conservé un morceau d’uranium pendant plusieurs années dans l’obscurité et il a constaté qu’au bout de ce temps l’action sur la plaque photographique n’avait pas varié sensiblement. MM. Elster et Geitel ont fait une expérience analogue et ont trouvé également que l’action était constante[2].
J’ai mesuré l’intensité du rayonnement de l’uranium en utilisant l’action de ce rayonnement sur la conductibilité de l’air. La méthode de mesures sera exposée plus loin. J’ai ainsi obtenu des nombres qui prouvent la constance du rayonnement dans les limites de précision des expériences, c’est-à-dire à 2 pour 100 ou 3 pour 100 près[3].
On utilisait pour ces mesures un plateau métallique recouvert d’une couche d’uranium en poudre ; ce plateau n’était d’ailleurs pas conservé dans l’obscurité, cette condition s’étant montrée sans importance d’après les observateurs cités précédemment. Le nombre des mesures effectuées avec ce plateau est très grand, et actuellement ces mesures portent sur un intervalle de temps de 5 années.
Des recherches furent faites pour reconnaître si d’autres substances peuvent agir comme les composés d’urane. M. Schmidt publia le premier que le thorium et ses composés possèdent également cette faculté[4]. Un travail analogue fait en même temps m’a donné le même résultat. J’ai publié ce travail, n’ayant pas encore eu connaissance de la publication de M. Schmidt[5].
Nous dirons que l’uranium, le thorium et leurs composés émettent des rayons de Becquerel. J’ai appelé radioactives les substances qui donnent lieu à une émission de ce genre[6]. Ce nom a été depuis généralement adopté.
Par leurs effets photographiques et électriques les rayons de Becquerel se rapprochent des rayons de Röntgen. Ils ont aussi, comme ces derniers, la faculté de traverser toute matière. Mais leur pouvoir de pénétration est extrêmement différent : les rayons de l’uranium et du thorium sont arrêtés par quelques millimètres de matière solide et ne peuvent franchir dans l’air une distance supérieure à quelques centimètres ; tout au moins en est-il ainsi pour la grosse partie du rayonnement.
Les travaux de divers physiciens, et, en premier lieu, de M. Rutherford, ont montré que les rayons de Becquerel n’éprouvent ni réflexion régulière, ni réfraction, ni polarisation[7].
Le faible pouvoir pénétrant des rayons uraniques et thoriques conduirait à les assimiler aux rayons secondaires qui sont produits par les rayons Röntgen, et dont l’étude a été faite par M. Sagnac[8], plutôt qu’aux rayons Röntgen eux-mêmes.
D’autre part, on peut chercher à rapprocher les rayons de Becquerel de rayons cathodiques se propageant dans l’air (rayons de Lenard). On sait aujourd’hui que ces divers rapprochements sont tous légitimes.
Mesure de l’intensité du rayonnement. — La méthode employée consiste à mesurer la conductibilité acquise par l’air sous l’action des substances radioactives ; cette méthode a l’avantage d’être rapide et de fournir des nombres qu’on peut comparer entre eux. L’appareil que j’ai employé à cet effet se compose essentiellement d’un condensateur à plateaux...
Les rayons uraniques, découverts par M. Becquerel, impressionnent les plaques photographiques à l’abri de la lumière ; ils peuvent traverser toutes les substances solides, liquides et gazeuses, à condition que l’épaisseur en soit suffisamment faible ; en traversant les gaz, ils les rendent faiblement conducteurs de l’électricité[1].
Ces propriétés des composés d’urane ne sont dues à aucune cause excitatrice connue. Le rayonnement semble spontané ; il ne diminue point d’intensité quand on conserve les composés d’urane dans l’obscurité complète pendant des années ; il ne s’agit donc pas là d’une phosphorescence particulière produite par la lumière.
La spontanéité et la constance du rayonnement uranique se présentaient comme un phénomène physique tout à fait extraordinaire. M. Becquerel a conservé un morceau d’uranium pendant plusieurs années dans l’obscurité et il a constaté qu’au bout de ce temps l’action sur la plaque photographique n’avait pas varié sensiblement. MM. Elster et Geitel ont fait une expérience analogue et ont trouvé également que l’action était constante[2].
J’ai mesuré l’intensité du rayonnement de l’uranium en utilisant l’action de ce rayonnement sur la conductibilité de l’air. La méthode de mesures sera exposée plus loin. J’ai ainsi obtenu des nombres qui prouvent la constance du rayonnement dans les limites de précision des expériences, c’est-à-dire à 2 pour 100 ou 3 pour 100 près[3].
On utilisait pour ces mesures un plateau métallique recouvert d’une couche d’uranium en poudre ; ce plateau n’était d’ailleurs pas conservé dans l’obscurité, cette condition s’étant montrée sans importance d’après les observateurs cités précédemment. Le nombre des mesures effectuées avec ce plateau est très grand, et actuellement ces mesures portent sur un intervalle de temps de 5 années.
Des recherches furent faites pour reconnaître si d’autres substances peuvent agir comme les composés d’urane. M. Schmidt publia le premier que le thorium et ses composés possèdent également cette faculté[4]. Un travail analogue fait en même temps m’a donné le même résultat. J’ai publié ce travail, n’ayant pas encore eu connaissance de la publication de M. Schmidt[5].
Nous dirons que l’uranium, le thorium et leurs composés émettent des rayons de Becquerel. J’ai appelé radioactives les substances qui donnent lieu à une émission de ce genre[6]. Ce nom a été depuis généralement adopté.
Par leurs effets photographiques et électriques les rayons de Becquerel se rapprochent des rayons de Röntgen. Ils ont aussi, comme ces derniers, la faculté de traverser toute matière. Mais leur pouvoir de pénétration est extrêmement différent : les rayons de l’uranium et du thorium sont arrêtés par quelques millimètres de matière solide et ne peuvent franchir dans l’air une distance supérieure à quelques centimètres ; tout au moins en est-il ainsi pour la grosse partie du rayonnement.
Les travaux de divers physiciens, et, en premier lieu, de M. Rutherford, ont montré que les rayons de Becquerel n’éprouvent ni réflexion régulière, ni réfraction, ni polarisation[7].
Le faible pouvoir pénétrant des rayons uraniques et thoriques conduirait à les assimiler aux rayons secondaires qui sont produits par les rayons Röntgen, et dont l’étude a été faite par M. Sagnac[8], plutôt qu’aux rayons Röntgen eux-mêmes.
D’autre part, on peut chercher à rapprocher les rayons de Becquerel de rayons cathodiques se propageant dans l’air (rayons de Lenard). On sait aujourd’hui que ces divers rapprochements sont tous légitimes.
Mesure de l’intensité du rayonnement. — La méthode employée consiste à mesurer la conductibilité acquise par l’air sous l’action des substances radioactives ; cette méthode a l’avantage d’être rapide et de fournir des nombres qu’on peut comparer entre eux. L’appareil que j’ai employé à cet effet se compose essentiellement d’un condensateur à plateaux...